

European Research Council Established by the European Commission

Practical Statistically-Sound Proofs of Exponentiation in any Group

Charlotte Hoffmann¹, Pavel Hubáček², Chethan Kamath³, Karen Klein⁴,

Krzysztof Pietrzak¹

¹Institute of Science and Technology Austria ²Charles University, Faculty of Mathematics and Physics ³Tel Aviv University ⁴ETH Zurich

Proofs of Exponentiation

- If $\operatorname{ord}(G)$ is known: \mathcal{P} and \mathcal{V} compute $e \coloneqq q^T \mod \operatorname{ord}(G)$ and x^e .
- Otherwise: \mathcal{P} performs T sequential exponentiations

 $x \to x^q \to x^{q^2} \to x^{q^3} \to \dots \to x^{q^T}$

and sends a *Proof of Exponentiation* (PoE) to \mathcal{V} .

• Cost of computing and verifying the proof $\ll T$.

PoE Applications

• Verifiable Delay Functions (VDFs) [BBBF18, Pie19, Wes20]:

- Verifiable: given a proof, everyone can efficiently and soundly verify correctness of the result
- Delay: can't be computed faster than a given time parameter *T* even with parallelization
- Function: unique output
- Time- and Space-Efficient Arguments for NP [BHR+21]:
 - PoEs as building blocks in polynomial commitment scheme

- 1. PoE Constructions and Properties
- 2. Technical Overview: Our PoE

1. PoE Constructions and Properties

2. Technical Overview: Our PoE

Interactive Protocols

- Completeness: If statement is true, V accepts with probability 1
- Soundness: If statement is false, \mathcal{V} rejects with high probability

- Statistical Soundness: Cheating \mathcal{P} is computationally unbounded
- Computational Soundness: Cheating \mathcal{P} is polynomially bounded

Why Statistical Soundness for PoEs?

- Polynomial Commitment [BHR+21]: Statistical knowledge soundness
- VDFs: Soundness holds even if group order known by prover
- Class groups: Low-order assumption not well studied/understood
- RSA groups: Need to sample safe primes and prove that a modulus is product of safe primes

Technical Overview

1. PoE Constructions and Properties

2. Technical Overview:

- 1. PoE construction of [BHR+21]
- 2. Our work: Reduce complexity

Practical Statistically-Sound Proofs of Exponentiations in any Group

Our Construction – First Step

Due to low order elements [BBF18, BP00]:

$$x_k^{q^T} = \alpha y_k$$
 ord $(\alpha) \mid r_k$ $x_k^{r_k q^T} = y_k^{r_k}$

 $\Pr[\operatorname{ord}(\alpha) \mid r_k] = 1/\operatorname{ord}(\alpha)$

Our Construction – First Step $g_{1,1}, g_{2,1}, \dots, g_{\lambda,1}$ 00 00 $r_{ij} \leftarrow \{0, 1, \dots, R\}$ $g_{1,2}, g_{2,2}, \dots, g_{\lambda,2}$...

If α has low order:

$$x_k^{q^{T-C}} = \alpha \tilde{y}_k \quad \xrightarrow{\operatorname{ord}(\alpha) \mid q^C} \quad (\alpha \tilde{y}_k)^{q^C} = \tilde{y}_k^{q^C} = y_k = x_k^{q^T}$$

 \Rightarrow Reduce proof size of [BHR+21] from $\lambda \log T$ to $\lambda \log T / \log B$

On Parameters q and B

$$q \coloneqq \prod_{p < B \text{ prime}} p$$

- [BHR+21]: q has to be large to ensure soundness of polynomial commitment: $q \gg 2^{n poly(\lambda)}$
- VDFs: Can adjust the cost of the initial exponentiation by adjusting time parameter ${\cal T}$

Example

Set $\lambda = 80$, T = 2^{32} , $B = 521 \Rightarrow q \approx 2^{703}$

Proof size drops from $\lambda \log T = 2560$ to $\lambda \log T / \log B = 284$ group elements

 \Rightarrow 655 KB to 74 KB

Comparison

Cost of Verifying λ PoEs		Verifier's complexity increases	
ΡοΕ	Statistically Sound?	Verifier's Complexity	Proof Size
[Wes20]	no	$\log T + \lambda^2$	1
[Pie19]	in some groups	$\lambda \log T + \lambda^2 + \log q$	log T
[BHR+21]	yes	$\lambda^2 \log T + \lambda \log q$	$\lambda \log T$
Our work w/o recursion	yes	$\lambda^2 \log T / \log B + \lambda \log q \log T / \log B$	$\lambda \log T / \log B$
Our work w/ recursion	yes	$\lambda^2 \log T / \log B + \lambda \log q \log \log T / \log B$	$\frac{\lambda}{\log T}/\log B + 1)$
	and b	e via recursion patching y-Sound Proofs of Exponentiations in any Group	Question

?