Practical Statistically-Sound Proofs of Exponentiation in any Group

Charlotte Hoffmann ${ }^{1}$, Pavel Hubáček ${ }^{2}$, Chethan Kamath ${ }^{3}$, Karen Klein ${ }^{4}$, Krzysztof Pietrzak ${ }^{1}$

${ }^{1}$ Institute of Science and Technology Austria
${ }^{2}$ Charles University, Faculty of Mathematics and Physics
${ }^{3}$ Tel Aviv University
${ }^{4}$ ETH Zurich

Proofs of Exponentiation

- If $\operatorname{ord}(G)$ is known: \mathcal{P} and \mathcal{V} compute $e:=q^{T} \bmod \operatorname{ord}(G)$ and x^{e}.
- Otherwise: \mathcal{P} performs T sequential exponentiations

$$
x \rightarrow x^{q} \rightarrow x^{q^{2}} \rightarrow x^{q^{3}} \rightarrow \cdots \rightarrow x^{q^{T}}
$$

and sends a Proof of Exponentiation (PoE) to \mathcal{V}.

- Cost of computing and verifying the proof $\ll T$.

PoE Applications

- Verifiable Delay Functions (VDFs) [BBBF18, Pie19, Wes20]:
- Verifiable: given a proof, everyone can efficiently and soundly verify correctness of the result
- Delay: can't be computed faster than a given time parameter T even with parallelization
- Function: unique output
- Time- and Space-Efficient Arguments for NP [BHR+21]:
- PoEs as building blocks in polynomial commitment scheme

Plan

1. PoE Constructions and Properties
2. Technical Overview: Our PoE

Plan

1. PoE Constructions and Properties
2. Technical Overview: Our PoE

Interactive Protocols

- Completeness: If statement is true, \mathcal{V} accepts with probability 1
- Soundness: If statement is false, \mathcal{V} rejects with high probability
- Statistical Soundness: Cheating \mathcal{P} is computationally unbounded
- Computational Soundness: Cheating \mathcal{P} is polynomially bounded

Overview of PoEs

$$
(x, y, q, T) \text { s.t. } x^{q^{T}}=y
$$

Why Statistical Soundness for PoEs?

- Polynomial Commitment [BHR+21]: Statistical knowledge soundness
- VDFs: Soundness holds even if group order known by prover
- Class groups: Low-order assumption not well studied/understood
- RSA groups: Need to sample safe primes and prove that a modulus is product of safe primes

Technical Overview

Plan

1. PoE Constructions and Properties

2. Technical Overview:
3. PoE construction of $[B H R+21]$
4. Our work: Reduce complexity

One Round of [BHR+21] PoE

$$
x_{i}^{q^{T}}=y_{i}
$$

[BHR+21] PoE - Main Idea

Want: Reduce the number of statements to λ

$$
x_{1} q^{T / 2}=y_{1}
$$

$$
x_{2} q^{T / 2}=y_{2}
$$

$$
x_{2 \lambda} q^{T / 2}=y_{2 \lambda}
$$

$$
r \leftarrow\{0,1\}^{2 \lambda} \quad r_{k}=1 \mathrm{w} / \text { probability } 1 / 2
$$

$$
\left(\prod_{i \in[2 \lambda]} x_{i}^{r_{i}}\right)^{q^{T / 2}}=\prod_{i \in[2 \lambda]} y_{i}^{r_{i}}
$$

If at least one of the initial statements is wrong, the new statement

> Goal: Reduce this number

\Rightarrow At least one of the statements is wrong with probability at least $1-2^{-\lambda}$.

Our Construction - First Step

$\operatorname{Pr}[$ new statement wrong] $\geq 1 / 2$

$\operatorname{Pr}[$ new statement wrong] $\geq 1 / 2$
Due to low order elements [BBF18, BP00]:

$$
x_{k} q^{q^{T}}=\alpha y_{k} \xrightarrow[\longrightarrow]{\operatorname{ord}(\alpha) \mid r_{k}} x_{k}{ }^{r_{k} q^{T}}=y_{k}^{r_{k}} \quad \operatorname{Pr}\left[\operatorname{ord}(\alpha) \mid r_{k}\right]=1 / \operatorname{ord}(\alpha)
$$

Our Construction - First Step

Our Construction - Second Step

$q:=\prod_{p<B \text { prime }} p$

$$
x_{1} q^{T-C}=\tilde{y}_{1} \quad x_{2}^{q^{T-C}}=\tilde{y}_{2} \quad x_{k}^{q^{T-C}}=\alpha \tilde{y}_{k}
$$

$$
x_{\lambda}^{q^{T-C}}=\tilde{y}_{\lambda}
$$

$$
C:=\log T \log B
$$

\qquad \rightarrow

compute $\tilde{y}_{i}^{q^{C}}=y_{i} \forall i \in[\lambda]$

If α has low order:

$$
x_{k}^{q^{T-C}}=\alpha \tilde{y}_{k} \xrightarrow{\operatorname{ord}(\alpha) \mid q^{C}}\left(\alpha \tilde{y}_{k}\right)^{q^{C}}=\tilde{y}_{k}{ }^{q^{C}}=y_{k}=x_{k}^{q^{T}}
$$

\Rightarrow Reduce proof size of $[B H R+21]$ from $\lambda \log T$ to $\lambda \log T / \log B$

Our Construction - Basic Protocol

$$
\rho:=\lambda / \log B
$$

Statistical Soundness:

- If $\operatorname{ord}(\alpha) \mid q^{C} \Rightarrow \mathcal{V}$ obtains correct result y_{i}
- Else $\Rightarrow \alpha$ has sufficiently high order
$\Rightarrow \mathcal{V}$ rejects after interactive phase w.h.p.

On Parameters q and B

$$
q:=\prod_{p<B \text { prime }} p
$$

- [BHR+21]: q has to be large to ensure soundness of polynomial commitment: $q>2^{n}$ poly ($\left.\lambda\right)$
- VDFs: Can adjust the cost of the initial exponentiation by adjusting time parameter T
Example
Set $\lambda=80, \mathrm{~T}=2^{32}, B=521 \Rightarrow q \approx 2^{703}$
Proof size drops from $\lambda \log T=2560$ to $\lambda \log T / \log B=284$ group elements
$\Rightarrow 655 \mathrm{~KB}$ to 74 KB

Comparison

Cost of Verifying λ PoEs		Verifier's complexity increases	
		1	
PoE	Statistically Sound?	Verifier's Complexity	Proof Size
[Wes20]	no	$\log T+\lambda^{2}$	1
[Pie19]	in some groups	$\lambda \log T+\lambda^{2}+\log q$	$\log T$
[BHR+21]	yes	$\lambda^{2} \log T+\lambda \log q$	$\lambda \log T$
Our work w/o recursion	yes	$\lambda^{2} \log T / \log B+\lambda \log q \log T / \log B$	$\lambda \log T / \log B$
Our work w/ recursion	yes	$\lambda^{2} \log T / \log B+\lambda \log q \log \log T / \log B$	$\lambda(\log T / \log B+1)$
Solve via recursion and batching			- ${ }^{\text {+ }}$

